Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats

Menezes K., Nascimento M.A., Gonçalves J.P., Cruz A.S., Lopes D.V., Curzio B., Bonamino M., de Menezes J.R., Borojevic R., Rossi M.I., Coelho-Sampaio T.PLOS ONE, 2014

Here the authors investigated the regenerative properties of human adipose tissue-derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after the injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after the injection of hADSCs into the non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated with neural progenitors, the authors propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury.